cool math games boombot funbrain cool math games civiballs cooking games cool math games kids cool math games crazy taxi cool games cool educational games
Tuesday, November 9, 2010
19th All Soviet Union Mathematical Olympiad Problems 1985
1. ABC is an acute angled triangle. The midpoints of BC, CA and AB are D, E, F respectively. Perpendiculars are drawn from D to AB and CA, from E to BC and AB, and from F to CA and BC. The perpendiculars form a hexagon. Show that its area is half the area of the triangle. 2. Is there an integer n such that the sum of the (decimal) digits of n is 1000 and the sum of
Subscribe to:
Post Comments (Atom)
Popular Posts
-
Boxhead The Zombie Wars Infomation: Fight an army of zombies using awesome new weapons How to play: WADS Keys to move. Space to shoot. Z to ...
-
1. p(x) is a quadratic polynomial with non-negative coefficients. Show that p(xy)2 ≤ p(x2)p(y2). 2. A convex polygo...
-
1. 7 boys each went to a shop 3 times. Each pair met at the shop. Show that 3 must have been in the shop at the same time. 2. Can 7...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.