cool math games boombot funbrain cool math games civiballs cooking games cool math games kids cool math games crazy taxi cool games cool educational games
Thursday, November 18, 2010
11th International Mathematical Olympiad 1969 Problems & Solutions
A1. Prove that there are infinitely many positive integers m, such that n4 + m is not prime for any positive integer n. A2. Let f(x) = cos(a1 + x) + 1/2 cos(a2 + x) + 1/4 cos(a3 + x) + ... + 1/2n-1 cos(an + x), where ai are real constants and x is a real variable. If f(x1) = f(x2) = 0, prove that x1 - x2 is a multiple of π. A3. For each of k = 1, 2, 3, 4, 5 find
Subscribe to:
Post Comments (Atom)
Popular Posts
-
Boxhead The Zombie Wars Infomation: Fight an army of zombies using awesome new weapons How to play: WADS Keys to move. Space to shoot. Z to ...
-
A1. Show that there are arbitrarily large numbers n such that: (1) all its digits are 2 or more; and (2) the product of any four of ...
-
The left margin of this blog is entitled " Internet Integration in the Classroom " and it is composed of a number of great educati...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.