cool math games boombot funbrain cool math games civiballs cooking games cool math games kids cool math games crazy taxi cool games cool educational games
Friday, October 8, 2010
18th Iberoamerican Mathematical Olympiad Problems 2003
A1. Let A, B be two sets of N consecutive integers. If N = 2003, can we form N pairs (a, b) with a ∈ A, b ∈ B such that the sums of the pairs are N consecutive integers? What about N = 2004? A2. C is a point on the semicircle with diameter AB. D is a point on the arc BC. M, P, N are the midpoints of AC, CD and BD. The circumcenters of ACP and BDP are O, O'
Subscribe to:
Post Comments (Atom)
Popular Posts
-
1. p(x) is a quadratic polynomial with non-negative coefficients. Show that p(xy)2 ≤ p(x2)p(y2). 2. A convex polygo...
-
1. 7 boys each went to a shop 3 times. Each pair met at the shop. Show that 3 must have been in the shop at the same time. 2. Can 7...
-
A1. Prove that (21n+4)/(14n+3) is irreducible for every natural number n. A2. For what real values of x is √(x + √(2x-1)) ...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.