cool math games boombot funbrain cool math games civiballs cooking games cool math games kids cool math games crazy taxi cool games cool educational games
Monday, October 25, 2010
9th Swedish Mathematical Society Problems 1969
1. Find all integers m, n such that m3 = n3 + n. 2. Show that tan π/3n is irrational for all positive integers n. 3. a1 ≥ a2 ≥ ... ≥ an is a sequence of reals. b1, b2, b3, ... bn is any rearrangement of the sequence B1 ≥ B2 ≥ ... ≥ Bn. Show that ∑ aibi ≤ &sum aiBi. 4. Define g(x) as the largest value of |y2 - xy| for
Subscribe to:
Post Comments (Atom)
Popular Posts
-
1. p(x) is a quadratic polynomial with non-negative coefficients. Show that p(xy)2 ≤ p(x2)p(y2). 2. A convex polygo...
-
1. 7 boys each went to a shop 3 times. Each pair met at the shop. Show that 3 must have been in the shop at the same time. 2. Can 7...
-
A1. Prove that (21n+4)/(14n+3) is irreducible for every natural number n. A2. For what real values of x is √(x + √(2x-1)) ...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.